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A happy and lasting marriage

Fast and recurrent increase of the
computational power (hardware)

Development of more efficient
algorithm (software)

(Density Functional Theory; DFT)

Bardeen, Shockley, and Brattain

(Nobel Prize in Physics, 1956)

Moore’s law

W. Kohn

(Nobel Prize in Chemistry, 1998)

Simulation of materials with predictive-power from first-principles
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Challenge for first-principles simulations:
the multiscale ladder

We are here 

State of the art: 

“Full” study of systems 

of about 200 atoms 

Courtesy of J. Íñiguez
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Challenge for first-principles simulations:
simulations at operating conditions

The equilibrium value of the
polarization is a thermal average

over all accessible states.

P

E

T=0K 

•  We want to compute: 

•  The equilibrium value of P is a thermal 

average over all accessible states i

At T=0K only 1 

state is accessible: 

At finite temperatures many 

states are accessible: 
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Effective models for the lattice

〈P 〉 = 1

Z

∑

~x

P [~x] e−E[~x]/kBT

1 Identify the relevant degrees of freedom

Methods for construction of soft local modes or lattice Wannier functions: 

•  W. Zhong, D. Vanderbilt & K.M. Rabe, Phys. Rev. Lett. 73, 1861 (1994) 

•  K.M. Rabe & U.V. Waghmare, Phys. Rev. B 52, 13236 (1995) 

•  J. Íñiguez, A. García & J.M. Pérez-Mato, Phys. Rev. B 61, 3127 (2000) 

•  E. Cockayne, Phys. Rev. B 71, 094302 (2005) 

local polar distortion
associated to a FE instability

simplified version of the
unit cell of our FE crystal

+ cell strains to capture ferroelastic and piezoelectric effects

{~x} → {~u} ⊂ {~x}

〈P 〉 = 1

Z

∑

~u

P [~u] e−E[~u]/kBT

I Nice physical picture

I Reduce computational cost by factor 2-5
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Effective models for the lattice

1 Identify the relevant degrees of freedom

〈P 〉 = 1

Z

∑

~x

P [~x] e−E[~x]/kBT → 〈P 〉 = 1

Z

∑

~u

P [~u] e−E[~u]/kBT

2 Simple parametrization of the energy

E(~u)→ Heff [~u]

Taylor expansion of the energy as a function of the relevant degrees
of freedom, around a reference configuration.

Parameters computed once and for all from first-principles

Ab initio calculation 
for each value of u 

Compute once and for all: 
Heff [u] = E

0
 + au2 + bu4 

H
eff

({u},{η}) = ∑ K
ij
 u

i
 u

j
 + ∑ Γ

ij
 u

i
2 u

j
2 + ∑ C

lk
 η

l
 η

k
 + ∑ B

lij
 η

l
 u

i
 u

j


Effective Hamiltonian: 

•  Minimal Taylor expansion of the energy, as a function of {u} and {η}, 

taking the high-symmetry cubic phase as reference (u=0, η=0). 

•  The tensors K, Γ, C and B calculated from first-principles 

a<0 

b>0 

Heff(~u) = E0 + a~u2 + b~u4

I Nice physical picture

I Reduce the computational cost by orders
of magnitude
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Effective models for the lattice

1 Identify the relevant degrees of freedom

〈P 〉 = 1

Z

∑

~x

P [~x] e−E[~x]/kBT → 〈P 〉 = 1

Z

∑

~u

P [~u] e−E[~u]/kBT

2 Simple parametrization of the energy

E(~u)→ Heff [~u] = E0 + a~u2 + b~u4

3 Calculate the thermal average with Molecular Dynamics or Monte
Carlo simulations

〈P 〉 = 1

Z

∑

~u

P [~u] e−Heff [~u]/kBT
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The pros and cons of the effective lattice models

! Larger time/space scales

! Statistics

! Capture the ferroelectric
phase transitions

W. Zhong et al.,

Phys. Rev. Lett., 94, 1861 (1994)

! Identification of the relevant
degrees of freedom:
consider all of them

% Lack of explicit
consideration of electrons!
Integrated out and
considered implicitly during
the fitting of parameters

J. Wojde l et al.,

J. Phys.:Condens. Matter, 25, 305401 (2013)
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Many interesting problems require both lattice and
electrons!

P. Maksymovuch et al.,

Nano Lett., 11, 1906 (2011)

I Conductivity domain walls

I Magnetic domains

I Switching of ferroelectrics

I Transport (polarons)

I Defects

I ...

Javier Junquera javier.junquera@unican.es Second-principles methods



Our goal:

Development of a method to perform:
I Large-scale material simulations (upto the mesoscale)

I Combining the relevant lattice and electronic degrees of freedom
(and their interactions) on the same footing

I With arbitrary high accuracy (asymptotically DFT) to keep
predictive power

I At a very modest computational cost
I Out of the comfort zone of DFT calculations (finite temperature,

time-dependent electric fields, out-of-equilibrium...)
I Free of empirical data but with predictive power ⇒

“second-principles”

I Starting point: model atomic
potentials for lattice-dynamics,
including all degrees of freedom

I On top of this: relevant electronic
degrees of freedom: tight-binding like
Hamiltonian expressed in a basis of
Wannier functions.
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First basic ingredient:
The reference atomic geometry (RAG)

1 reference atomic geometry:
One particular configuration of
the nuclei that we will use as
reference to describe any other
configuration

2 No restrictions are impossed

3 Convenient to employ the
ground state or a suitably
chosen high-symmetry
configurations

I Corresponding forces and
stresses are zero

I The fewer the coupling terms
required to describe the
system
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Second basic ingredient:
The reference electron density (RED)

In most cases, the self-consistent electron density can be split

n(~r) = n0(~r) + δn(~r)

6

the electronic wavefunctions. Taking these basis func-
tions to be localized in space makes these parameters to
decay quickly with the distance between their centroids.
Therefore, we can obtain them from small-scale first-
principles simulations (see Sec. IV) and to apply them,
in a second step, to determine the properties of large sys-
tems. Given that all the information required to produce
a simulation comes from previous first-principles calcu-
lations we say that our approach is a second-principles
method to emphasize its non-empirical nature.

E(0) E(1) E(2)

U, I

E

doping (d)

screening

FIG. 1. (Color online) Schematic cartoon that represents the
most important physical magnitudes used in the development
of the second principles model: the reference atomic structure
and the reference and deformation electron densities. In pan-
els (a)-(c), the meaning of the balls (that represent the posi-
tion of the atoms in an hypothetical semiconductor configu-
ration), and the green clouds (that represent different charge
densities) are explained in the main text. In panels (d)-(f)
the horizontal lines represent the one-electron energy levels
obtained at the corresponding atomic structure for the elec-
tronic configuration from which the reference electron density
is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.

In order to clarify the concept of the reference atomic
geometry and reference electron density, let us present
one technology relevant straightforward application of
our method. It is related with an insulator or semi-
conductor doped with extra electrons or holes. Fig-
ure 1(a) represents this hypothetical semiconductor in
an schematic cartoon. It is made of two different type of
atoms (represented by large green and small red balls) in
a square planar geometry with a three atom basis. The
large atom is located at the center of the square while
the two small atoms lie at the center of each side. In this
particularly simple case depicted in Fig. 1(a), the atomic
configuration corresponds with the high-symmetry refer-

1 No assumption made on the form of the RED.
In non-magnetic insulators, the RED can be
taken as the ground state density in the
neutral configuration

I Valence bands full
I Conduction bands empty

2 Typically, it will be the actual solution of the
electronic problem

3 RAG and RED are completely independent:
we define a RED for every atomic structure

4 The method does not require the explicit
calculation of n0(~r)
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is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.
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Doping of semiconductors and insulators with e− or h+
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FIG. 1. (Color online) Schematic cartoon that represents the
most important physical magnitudes used in the development
of the second principles model: the reference atomic structure
and the reference and deformation electron densities. In pan-
els (a)-(c), the meaning of the balls (that represent the posi-
tion of the atoms in an hypothetical semiconductor configu-
ration), and the green clouds (that represent different charge
densities) are explained in the main text. In panels (d)-(f)
the horizontal lines represent the one-electron energy levels
obtained at the corresponding atomic structure for the elec-
tronic configuration from which the reference electron density
is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.

In order to clarify the concept of the reference atomic
geometry and reference electron density, let us present
one technology relevant straightforward application of
our method. It is related with an insulator or semi-
conductor doped with extra electrons or holes. Fig-
ure 1(a) represents this hypothetical semiconductor in
an schematic cartoon. It is made of two different type of
atoms (represented by large green and small red balls) in
a square planar geometry with a three atom basis. The
large atom is located at the center of the square while
the two small atoms lie at the center of each side. In this
particularly simple case depicted in Fig. 1(a), the atomic
configuration corresponds with the high-symmetry refer-

I The doping electron will occupy
states at the bottom of the
conduction band

I It will produce a response of
the electronic cloud...

I ...that can be described from
an admixture of the occupied
and unoccupied states of the
reference configuration

I δn(~r) ≡ doping + redistribution

n(~r) = n0(~r) + δn(~r)
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Approximate expression for the energy

n(~r) = n0(~r) + δn(~r)

Replacing in the total energy expression given by DFT,

EDFT =
∑

j~k

oj~k

〈
ψj~k

∣∣∣ t̂+ vext

∣∣∣ψj~k
〉

+
1

2

∫∫
n(~r)n(~r′)

|~r − ~r′| d
3rd3r′ + Exc[n] + Enn

and after a Taylor expansion of the exchange-correlation

Exc[n] =Exc[n0] +

∫
δExc

δn(~r)

∣∣∣∣
n0

δn(~r)d3r

+
1

2

∫∫
δ2Exc

δn(~r)δn(~r′)

∣∣∣∣
n0

δn(~r)δn(~r′)d3rd3r′ + · · ·

M. Elstner et al., Phys. Rev. B 58 7260 (1998)

EDFT ≈ E(0) + E(1) + E(2) + · · ·
The method is systematically improvable

Assymptotic limit: DFT
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E(0) - Energy of the reference state

Correspond, without approximation, to the full DFT energy for the reference
density n0(~r)

6

the electronic wavefunctions. Taking these basis func-
tions to be localized in space makes these parameters to
decay quickly with the distance between their centroids.
Therefore, we can obtain them from small-scale first-
principles simulations (see Sec. IV) and to apply them,
in a second step, to determine the properties of large sys-
tems. Given that all the information required to produce
a simulation comes from previous first-principles calcu-
lations we say that our approach is a second-principles
method to emphasize its non-empirical nature.
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FIG. 1. (Color online) Schematic cartoon that represents the
most important physical magnitudes used in the development
of the second principles model: the reference atomic structure
and the reference and deformation electron densities. In pan-
els (a)-(c), the meaning of the balls (that represent the posi-
tion of the atoms in an hypothetical semiconductor configu-
ration), and the green clouds (that represent different charge
densities) are explained in the main text. In panels (d)-(f)
the horizontal lines represent the one-electron energy levels
obtained at the corresponding atomic structure for the elec-
tronic configuration from which the reference electron density
is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.

In order to clarify the concept of the reference atomic
geometry and reference electron density, let us present
one technology relevant straightforward application of
our method. It is related with an insulator or semi-
conductor doped with extra electrons or holes. Fig-
ure 1(a) represents this hypothetical semiconductor in
an schematic cartoon. It is made of two different type of
atoms (represented by large green and small red balls) in
a square planar geometry with a three atom basis. The
large atom is located at the center of the square while
the two small atoms lie at the center of each side. In this
particularly simple case depicted in Fig. 1(a), the atomic
configuration corresponds with the high-symmetry refer-

E(0) =
∑

j~k

o
(0)

j~k

〈
ψ

(0)

j~k

∣∣∣ t̂+ vext

∣∣∣ψ(0)

j~k

〉

+
1

2

∫∫
n0(~r)n

′
0(~r
′)

|~r − ~r′| d3rd3r′ + Exc[n0] + Enn

It is the dominant contribution to the total energy.

We can compute E(0)(η, {~u}) by employing a model potential that
depends only on the atomic positions, and where the electrons (assumed

to remain in the Born-Oppenhaimer surface) are integrated out

RED defined for all geometries

Huge gains with respect to other treatments:

no need to

I Accurate treatment of the electronic
interactions yielding the RED

I Solve numerically for E(0) and n0
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ure 1(a) represents this hypothetical semiconductor in
an schematic cartoon. It is made of two different type of
atoms (represented by large green and small red balls) in
a square planar geometry with a three atom basis. The
large atom is located at the center of the square while
the two small atoms lie at the center of each side. In this
particularly simple case depicted in Fig. 1(a), the atomic
configuration corresponds with the high-symmetry refer-
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It is the dominant contribution to the total energy.

We can compute E(0)(η, {~u}) by employing a model potential that
depends only on the atomic positions, and where the electrons (assumed

to remain in the Born-Oppenhaimer surface) are integrated out

RED defined for all geometries

Huge gains with respect to other treatments:

no need to

I Accurate treatment of the electronic
interactions yielding the RED

I Solve numerically for E(0) and n0
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the electronic wavefunctions. Taking these basis func-
tions to be localized in space makes these parameters to
decay quickly with the distance between their centroids.
Therefore, we can obtain them from small-scale first-
principles simulations (see Sec. IV) and to apply them,
in a second step, to determine the properties of large sys-
tems. Given that all the information required to produce
a simulation comes from previous first-principles calcu-
lations we say that our approach is a second-principles
method to emphasize its non-empirical nature.
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FIG. 1. (Color online) Schematic cartoon that represents the
most important physical magnitudes used in the development
of the second principles model: the reference atomic structure
and the reference and deformation electron densities. In pan-
els (a)-(c), the meaning of the balls (that represent the posi-
tion of the atoms in an hypothetical semiconductor configu-
ration), and the green clouds (that represent different charge
densities) are explained in the main text. In panels (d)-(f)
the horizontal lines represent the one-electron energy levels
obtained at the corresponding atomic structure for the elec-
tronic configuration from which the reference electron density
is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.
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E(1) - One-electron excitations

E(1) contains the differences in one-electron energies
It involves the one-electron excitations as captured by the deformation density
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the electronic wavefunctions. Taking these basis func-
tions to be localized in space makes these parameters to
decay quickly with the distance between their centroids.
Therefore, we can obtain them from small-scale first-
principles simulations (see Sec. IV) and to apply them,
in a second step, to determine the properties of large sys-
tems. Given that all the information required to produce
a simulation comes from previous first-principles calcu-
lations we say that our approach is a second-principles
method to emphasize its non-empirical nature.
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FIG. 1. (Color online) Schematic cartoon that represents the
most important physical magnitudes used in the development
of the second principles model: the reference atomic structure
and the reference and deformation electron densities. In pan-
els (a)-(c), the meaning of the balls (that represent the posi-
tion of the atoms in an hypothetical semiconductor configu-
ration), and the green clouds (that represent different charge
densities) are explained in the main text. In panels (d)-(f)
the horizontal lines represent the one-electron energy levels
obtained at the corresponding atomic structure for the elec-
tronic configuration from which the reference electron density
is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.

In order to clarify the concept of the reference atomic
geometry and reference electron density, let us present
one technology relevant straightforward application of
our method. It is related with an insulator or semi-
conductor doped with extra electrons or holes. Fig-
ure 1(a) represents this hypothetical semiconductor in
an schematic cartoon. It is made of two different type of
atoms (represented by large green and small red balls) in
a square planar geometry with a three atom basis. The
large atom is located at the center of the square while
the two small atoms lie at the center of each side. In this
particularly simple case depicted in Fig. 1(a), the atomic
configuration corresponds with the high-symmetry refer-
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ĥ0 = t̂+ vext + vH(n0;~r) + vxc[n0;~r]

I Typical DFTB schemes include a sum of one-electron energies

I Here we deal with the difference between the value of this quantity
for the actual system and the reference one

I Such a difference is a much smaller quantity, more amenable to
accurate calculations
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ration), and the green clouds (that represent different charge
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the horizontal lines represent the one-electron energy levels
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tronic configuration from which the reference electron density
is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.
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E(2) - Two-electron excitations

E(2) only contains interactions between 2 electrons

6

the electronic wavefunctions. Taking these basis func-
tions to be localized in space makes these parameters to
decay quickly with the distance between their centroids.
Therefore, we can obtain them from small-scale first-
principles simulations (see Sec. IV) and to apply them,
in a second step, to determine the properties of large sys-
tems. Given that all the information required to produce
a simulation comes from previous first-principles calcu-
lations we say that our approach is a second-principles
method to emphasize its non-empirical nature.
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FIG. 1. (Color online) Schematic cartoon that represents the
most important physical magnitudes used in the development
of the second principles model: the reference atomic structure
and the reference and deformation electron densities. In pan-
els (a)-(c), the meaning of the balls (that represent the posi-
tion of the atoms in an hypothetical semiconductor configu-
ration), and the green clouds (that represent different charge
densities) are explained in the main text. In panels (d)-(f)
the horizontal lines represent the one-electron energy levels
obtained at the corresponding atomic structure for the elec-
tronic configuration from which the reference electron density
is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.

In order to clarify the concept of the reference atomic
geometry and reference electron density, let us present
one technology relevant straightforward application of
our method. It is related with an insulator or semi-
conductor doped with extra electrons or holes. Fig-
ure 1(a) represents this hypothetical semiconductor in
an schematic cartoon. It is made of two different type of
atoms (represented by large green and small red balls) in
a square planar geometry with a three atom basis. The
large atom is located at the center of the square while
the two small atoms lie at the center of each side. In this
particularly simple case depicted in Fig. 1(a), the atomic
configuration corresponds with the high-symmetry refer-
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where the screened electron-electron
interaction operator, g(~r, ~r′), is
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I E(2) only depends on the square of the difference density

I Formally equivalent to Hartree-Fock (four-center like integrals)
I In the spin polarized case, sum of two contributions

I U depends on the total occupation matrix ⇒
close relationship with LDA+U or GW

I I depends on the difference of the spin occupation ⇒
close relationship with the magnetic Stoner constant

We can deal with strongly-correlated and magnetic systems
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els (a)-(c), the meaning of the balls (that represent the posi-
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ration), and the green clouds (that represent different charge
densities) are explained in the main text. In panels (d)-(f)
the horizontal lines represent the one-electron energy levels
obtained at the corresponding atomic structure for the elec-
tronic configuration from which the reference electron density
is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.
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atoms (represented by large green and small red balls) in
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is defined. Full green circles represent full occupation of a
given state by electrons. Half filled orange/green circles indi-
cate partial occupation of a particular level. Parameters γ, U ,
and I are defined in Sec. II E. Only the case of doping with
electrons is schematized in the cartoon. Doping with holes
would lead to a fully equivalent scheme.
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Basis set of Wannier functions

1 Naturally adapted to materials ⇒ accurate parametrization of the
system retaining a minimal basis

2 Spatially localized ⇒ matrix elements restricted to relatively close
neighbours

Figure 2: Isosurface contours for a maximally-localized Wannier function in BaTiO3 in the
paraelectric (left) and ferroelectric (right) phase. O atoms are in white, Ti yellow, and Ba
green. The WF is one of the 9 originating from the composite group of the O 2p bands, showing
strong and polarizable hybridization between the 2pz orbital of O and the 3dz2 orbitals of Ti,
usually considered empty in an ionic picture. [From Ref. [19]]

of the localization functional with respect to an infinitesimal unitary rotation of our set

of Bloch orbitals

|unk〉 → |unk〉 +
∑

m

dW (k)
mn |umk〉 , (6)

where dW an infinitesimal antiunitary matrix dW † = −dW such that

U (k)
mn = δmn + dW (k)

mn . (7)

This provides an “equation of motion” for the evolution of the U
(k)
mn , and of the |Rn 〉 de-

rived in (3), towards the minimum of Ω; e.g., in the steepest-descent approach small finite

steps in the direction opposite to the gradient decrease the value of Ω, until a minimum

is reached. The unitary matrices are then used to construct the Wannier functions via

Eq. (3), as illustrated for the semiconductors Si and GaAs in Fig. 1 and for the ferroelectric

perovskite BaTiO3 in Fig. 2.

133

Maximally Localized Wannier function in
BaTiO3.
One of the 9 originated from the composite
group of the O 2p bands.
N. Marzari and D. Vanderbilt,

First-principles calculations for ferroelectrics, 436, 146

(1998)

3 Orthogonal ⇒ no need to compute overlaps

4 Flexible description of the electronic band structure ⇒ selection of
appropriate bands (small number of basis set to be included)

We can deal accurately and cheaply with very large systems
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paraelectric (left) and ferroelectric (right) phase. O atoms are in white, Ti yellow, and Ba
green. The WF is one of the 9 originating from the composite group of the O 2p bands, showing
strong and polarizable hybridization between the 2pz orbital of O and the 3dz2 orbitals of Ti,
usually considered empty in an ionic picture. [From Ref. [19]]

of the localization functional with respect to an infinitesimal unitary rotation of our set

of Bloch orbitals

|unk〉 → |unk〉 +
∑

m

dW (k)
mn |umk〉 , (6)

where dW an infinitesimal antiunitary matrix dW † = −dW such that

U (k)
mn = δmn + dW (k)

mn . (7)

This provides an “equation of motion” for the evolution of the U
(k)
mn , and of the |Rn 〉 de-

rived in (3), towards the minimum of Ω; e.g., in the steepest-descent approach small finite

steps in the direction opposite to the gradient decrease the value of Ω, until a minimum

is reached. The unitary matrices are then used to construct the Wannier functions via

Eq. (3), as illustrated for the semiconductors Si and GaAs in Fig. 1 and for the ferroelectric

perovskite BaTiO3 in Fig. 2.
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Maximally Localized Wannier function in
BaTiO3.
One of the 9 originated from the composite
group of the O 2p bands.
N. Marzari and D. Vanderbilt,

First-principles calculations for ferroelectrics, 436, 146

(1998)

3 Orthogonal ⇒ no need to compute overlaps

4 Flexible description of the electronic band structure ⇒ selection of
appropriate bands (small number of basis set to be included)

We can deal accurately and cheaply with very large systems
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Maximally localized Wannier functions

The idea is to get localized packages in real space using a very broad
superposition of states at ~k space.

N. Marzari et al.,

Rev. Mod. Phys., 84, 1419 (2012)

|χa〉 ≡ |~RAa〉 =
V

(2π)
3

∫

BZ

d~k e−i
~k·~RA

J∑

m=1

T (~k)
ma |ψ(0)

m~k
〉

The electronic states can be effectively splitted into:
I an active set playing an important role in the properties under study
I a background set that will be integrated out from explicit treatment
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Expressions of charge densities in terms of a Wannier
functions

Expression of the eigenstates of the perturbed state in terms of a
Wannier basis

|ψj~k〉 =
∑

a

cja~ke
i~k·~RA |χa〉

Charge density of the perturbed state in terms of Wannier functions

n(~r) =
∑

j~k

oj~k|ψj~k(~r)|2 =
∑

j~k

oj~kψ
∗
j~k
(~r)ψj~k(~r)

=
∑

j~k

∑

ab

oj~kc
∗
ja~k
cjb~ke

i~k(~RB−~RA)χa(~r)χb(~r).

=
∑

ab

dabχa(~r)χb(~r)

where we have introduced the reduced density matrix

dab =
∑

j~k

oj~kc
∗
ja~k
cjb~ke

i~k(~RB−~RA)
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The deformation occupation matrix

Repeating the for the RED density

n(~r) =
∑

ab

dabχa(~r)χb(~r) n0(~r) =
∑

ab

d
(0)
abχa(~r)χb(~r)

and substracting

δn(~r) =
∑

ab

Dabχa(~r)χb(~r)

where we have defined the deformation occupation matrix

Dab = dab − d(0)
ab
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Energy expressions in term of the

deformation occupation matrix: E(1)

E(1) =
∑

j~k

[
oj~k

〈
ψj~k

∣∣∣ ĥ0

∣∣∣ψj~k
〉
− o(0)

j~k

〈
ψ

(0)

j~k

∣∣∣ ĥ0

∣∣∣ψ(0)

j~k

〉]

=
∑

j~k

[
oj~k

∑

ab

c∗
aj~k
cbj~ke

i~k(~RB−~RA)〈χa|ĥ0|χb〉

− o
(0)

j~k

∑

ab

(
c
(0)

aj~k

)∗
c
(0)

bj~k
ei
~k(~RB−~RA)〈χa|ĥ0|χb〉

]

=

[∑

ab

dab〈χa|ĥ0|χb〉 −
∑

ab

d
(0)
ab 〈χa|ĥ0|χb〉

]

=
∑

ab

Dabγab

where γab is one of the primary parameters defined in our model

γab = 〈χa| ĥ0 |χb〉 =
∫
d3r χa(~r) ĥ0 χb(~r)
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Energy expressions in term of the

deformation occupation matrix: E(2)

E(2) =
1

2

∫
d3r

∫
d3r′g(~r, ~r′)δn(~r)δn(~r′)

=
1

2

∑

ab

∑

a′b′

DabDa′b′〈χaχa′ |ĝ|χbχb′〉

=
1

2

∑

ab

∑

a′b′

DabDa′b′Uaba′b′ ,

where Uaba′b′ is the second primary parameter defined in our model

Uaba′b′ = 〈χaχa′ |ĝ|χbχb′〉

=

∫
d3rχa(~r)χb(~r)

∫
d3r′χa′(~r′)χb′(~r

′)ĝ(~r, ~r′)

g(~r, ~r′) =
1

|~r − ~r′| +
δ2Exc

δn(~r)δn(~r′)

∣∣∣∣
n0
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Electrostatics

The one-electron integrals gathers Coulomb
interactions associated with the long-range

electrostatic potentials

γelec,e
ab ≡ 〈χa| vH(n0;~r) |χb〉

=

∫
χa(~r)

(∫
n0(~r

′)

|~r − ~r′|d
3r′
)
χb(~r)d

3r

=

∫
χa(~r)

(∫ ∑
c o

(0)
c |χc(~r

′)|2
|~r − ~r′| d3r′

)
χb(~r)d

3r

The Coulomb electron-electron interaction can be split into
[A. Demkov et al., Phys. Rev. B 52, 1618 (1995)]

I Near field
I Far field: the electrostatic potential can be expressed as a multipole

expansion

vH(n0;~r) =
∑

c

o(0)
c

∫ |χc(~r
′)|2

|~r − ~r′| d
3r′ ≈

∑

c

qc
r

+
∑

c

~pc · ~r
r3

+ . . . .
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Electrostatics

Doing the same for the potential associated with the nuclei,

vext(~r)− vapp(~r) ≈ −
∑

λ

Zλ
r
−
∑

λ

(Zλ~uλ) · ~r
r3

+ . . .

and adding all the far-field contributions, taking into account that the
interactions take place in a material at its reference electronic density

vFF(~ra) ≈−
∑

λ

[
~eTλa(
←→ε∞)−1~eλa

] qλ
|~rλ − ~ra|

−
∑

λ

[~pλ(
←→ε∞)−1~eλa]

|~rλ − ~ra|2

Finally, considering that the Wannier functions are extremely localized,
we define the long-range contribution as being only diagonal

γ lr
ab = vFF(~ra)δab γsr

ab = γab − γ lr
ab
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Electron-lattice coupling

The dependence of the model parameters
on the atomic configuration is captured by

the electron-lattice couplings

γsr
ab = γ0,sr

ab +
∑

λυ

[
−~fab,λυ · δ~rλυ+

+
∑

λ′υ′

δ~rλυ
←→g ab,λυλ′υ′δ~rλ′υ′ + ...

]
,

Including quadratic constants: enough to describe typical changes in γ

Physical meaning of the parameters:

I when a = b: it represents the force created by an electron occupying
the WF χa over the surrounding atoms (Jahn-Teller effect in solids
or polaron formation)

I Off-diagonal terms in ~f describe the mixing of two WFs upon an
atomic distortion, and thus quantify changes in covalency (pseudo
Jahn-Teller vibronic constants and are, involved in ferroelectricity).
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Self-consistent equations

The total energy depends on the deformation occupation matrix, that
depends on the coefficients of the wave functions in the basis of Wannier

functions, the only variational parameter of the method

∑

b

hs
ab,~k

cs
jb~k

= εs
j~k
cs
ja~k

where the corresponding Hamiltonian matrix is

hs
ab,~k

=
∑

~RB−~RA

ei
~k·(~RB−~RA)hsab

and the real-space Hamiltonian is

hsab = γab +
∑

a′b′

[(
Ds
a′b′ +D−sa′b′

)
Uaba′b′+

(
D−sa′b′ −Ds

a′b′
)
Iaba′b′

]
.
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Total energy, forces, and stress

Adding together the expressions for the one-electron and two-electron
integrals, we get the total energy

E =E(0) +
∑

ab

DU
abγ

sr
ab

+
1

2

∑

ab

∑

a′b′

DU
abD

U
a′b′U

sr
aba′b′

+
∑

a

DU
aa

(
vFF(~ra) +

1

2

∑

a′

DU
a′a′U

lg
aaa′a′

)
.

Forces and stresses can be computed by direct derivation of the total
energy with respect to atomic positions and cell strains

~Fλ = −~∇λE = −~∇λE(0) −
∑

ab

DU
ab
~∇λγab

Sαβ = − 1

V

[
∂E(0)

∂ηαβ
+
∑

ab

DU
ab

∂γsr
ab

∂ηαβ
+
∂Eelec

∂ηαβ

]
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Parametrization

This method allows for large scale material simulations assuming that
some parameters describing one-electron and two-electrons are known

before hand

γab = 〈χa| ĥ0 |χb〉 =
∫
d3r χa(~r) ĥ0 χb(~r)

Uaba′b′ = 〈χaχa′ |ĝ|χbχb′〉 =
∫
d3rχa(~r)χb(~r)

∫
d3r′χa′(~r′)χb′(~r

′)ĝ(~r, ~r′)

Since the chosen basis functions are localized in space, the required
calculations could be performed on small supercells

A direct calculation to obtain the parameters is, in principle, feasible
(but would require significant effort)
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Parametrization: practical approach
1 Identify a training set: relevant atomic and electronic configurations

from which the model parameters will identified and computed.
I Magnetic systems: different spin arrangements
I Bands sensitive to atomic structure: different geometries
I Doping effects: DFT simulations on charged systems

2 Compute the real-space Hamiltonian

hsab =
(2π)3

V

∫

BZ

d3k


∑

j

[
T
s(~k)
ja

]?
εs
j~k
T
s(~k)
jb


 ei(~RA−~RB)~k

Routinely provided by wannier90 code
A. Mostofi et al. Comput. Phys. Commun. 178, 685 (2008)

3 Filter large enough interactions that are retained

|hsab(i)| > δεh, for at least one i in the TS

4 Fit the γ, U and I to reproduce the {hsab} matrix elements above

hsab(i) = γab +
∑

a′b′

[(
Ds
a′b′(i) +D−sa′b′(i)

)
Uaba′b′+

(
D−sa′b′(i)−Ds

a′b′(i)
)
Iaba′b′

]
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Parametrization: practical approach
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scale-up

This method is currently implemented in our new code:

    SCALE UP

Second-principles Computational
Approach for Lattice and Electrons

I Single and composite materials

I MPI paralellization

I Full and Lanczos diagonalization

I Geometry optimization

I Dynamics

I Trivial QM/MM (simply put basis functions in some of the atoms)

Available soon!

Javier Junquera javier.junquera@unican.es Second-principles methods



Head-to-head tail-to-tail domains in PbTiO3

The field of ferroelectric domain walls is currently very exciting due to
possible applications in electronics.

Some domain wall are conducting

Their morphology and properties can be
dynamically altered with e.g. electric fields

Problem: Strong controversy about the origin of the conductivity.

One strong difficulty is that the scale is too large for ab initio

We have carried preliminary calculations to check whether the method
can simulate these systems
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Head-to-head tail-to-tail domains in PbTiO3

We describe neutral PbTiO3:
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- Model Hamiltonian
- Occupied Wannier on Oz
- Empty Wannier on Ti
- Correct band gap of 3.2eV

We take a 1× 1× 50 supercell... 250 atoms

1 We optimize the monodomain phase

2 From that structure we build a 25/25
head-to-head domains
Without electrons electrostatic potential sends
system to paraelectric phase
Band crossing and electron transfer!
Then forces are largely compensated

3 Runtime: 1.8 minutes
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Conclusions

New “second-principles” method for large scale simulations combining
electron and lattice degrees of freedom

This offers the opportunity to move
continuously from a fully
first-principles description

(considering explicitly all electrons
and ions) to a coarse grained model

in which the electronic degrees of
freedom are integrated out.

I Magnetic systems
I Strongly correlated electrons
I Electron lattice coupling
I More to come (spin-orbit, TDDFT, ...)
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Most important reference

Ph.D. position might be available to work on “second-principles”.
Deadline next week
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